首页> 外文OA文献 >A Distributed Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-Source Data
【2h】

A Distributed Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation From Multi-Source Data

机译:一种基于局部敏感度哈希的基于多源数据的云服务推荐方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To maximize the economic benefits, a cloud service provider needs to recommend its services to as many users as possible based on the historical user-service quality data. However, when a cloud platform (e.g., Amazon) intends to make a service recommendation decision, considering only its own user-service quality data is insufficient, because a cloud user may invoke services from multiple distributed cloud platforms (e.g., Amazon and IBM). In this situation, it is promising for Amazon to collaborate with other cloud platforms (e.g., IBM) to utilize the integrated data for the service recommendation to improve the recommendation accuracy. However, two challenges are present in the above-mentioned collaboration process, where we attempt to use multi-source data for the service recommendation. First, protecting users’ privacy is challenging when IBM releases its own data to Amazon. Second, the recommendation efficiency and scalability are often low when the user-service quality data of Amazon and IBM update frequently. Considering these challenges, a privacy-preserving and scalable service recommendation approach based on distributed locality-sensitive hashing, i.e., SerRecdistri-LSH , is proposed in this paper to handle the service recommendation in a distributed cloud environment. Extensive experiments on the WS-DREAM data set validate the feasibility of our approach in terms of service recommendation accuracy, scalability, and privacy preservation.
机译:为了使经济利益最大化,云服务提供商需要根据历史用户服务质量数据向尽可能多的用户推荐其服务。但是,当云平台(例如,Amazon)打算做出服务推荐决定时,仅考虑其自身的用户服务质量数据是不够的,因为云用户可以从多个分布式云平台(例如,Amazon和IBM)调用服务。在这种情况下,亚马逊有望与其他云平台(例如IBM)合作,以将集成数据用于服务推荐以提高推荐准确性。但是,上述协作过程中存在两个挑战,我们试图在此过程中使用多源数据进行服务推荐。首先,当IBM将自己的数据发布到Amazon时,保护用户的隐私面临挑战。其次,当Amazon和IBM的用户服务质量数据频繁更新时,推荐效率和可伸缩性通常较低。考虑到这些挑战,本文提出了一种基于分布式局部敏感哈希的隐私保护和可扩展服务推荐方法,即SerRecdistri-LSH,以处理分布式云环境中的服务推荐。在WS-DREAM数据集上进行的大量实验从服务推荐的准确性,可伸缩性和隐私保护方面证明了我们方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号